Scientists demonstrate the use of a hydrogen molecule as a quantum sensor

Scientists demonstrate the use of a hydrogen molecule as a quantum sensor

Scientists demonstrate the use of a hydrogen molecule as a quantum sensor

The development allows them to measure the chemical properties of materials at unprecedented time and spatial resolutions.

What if we could use a hydrogen molecule as a quantum sensor in a terahertz laser-equipped scanning tunneling microscope? This would allow us to measure the chemical properties of materials at unprecedented time and spatial resolutions.

This new technique has now been developed by physicists at the University of California, Irvine, according to a statement released by the institution on Friday.

A much more sensitive quantum microscope 

“This project represents an advance in both the measurement technique and the scientific question the approach allowed us to explore,” said in the press release co-author of the new study Wilson Ho, Donald Bren Professor of physics & astronomy and chemistry.

“A quantum microscope that relies on probing the coherent superposition of states in a two-level system is much more sensitive than existing instruments that are not based on this quantum physics principle.”

The scientists were able to achieve a superposition of two states through a laser pulse that coaxed the newly-engineered system to go from a ground state to an excited state in a cyclical fashion. Even though the duration of the cyclical oscillations lasted only mere tens of picoseconds, the scientists were still able to see how the hydrogen molecule was interacting with its environment.

A hydrogen molecule merged with the quantum microscope

“The hydrogen molecule became part of the quantum microscope in the sense that wherever the microscope scanned, the hydrogen was there in between the tip and the sample,” said Ho. “It makes for an extremely sensitive probe, allowing us to see variations down to 0.1 angstroms. At this resolution, we could see how the charge distributions change on the sample.”

Ho further added that this experiment represents the first demonstration of chemically sensitive spectroscopy based on terahertz-induced rectification current through a single molecule. The new technique can now be applied to the analysis of two-dimensional materials which could be used in advanced energy systems, electronics, and even quantum computers.

Source: Interesting Engineering

Large Hadron Collider fires up for the first time in three years as scientists begin hunt for a ‘fifth force of nature’

Large Hadron Collider fires up for the first time in three years as scientists begin hunt for a ‘fifth force of nature’

Scientists demonstrate the use of a hydrogen molecule as a quantum sensor

Leave a Reply

Your email address will not be published. Required fields are marked *

Solve : *
15 + 23 =


This site uses Akismet to reduce spam. Learn how your comment data is processed.

Çok Okunan Yazılar