Researchers present list of comet 67P/Churyumov-Gerasimenko ingredients

Researchers present list of comet 67P/Churyumov-Gerasimenko ingredients

The dust that comet 67P/Churyumov-Gerasimenko emits into space consists to about one half of organic molecules. The dust belongs to the most pristine and carbon-rich material known in our solar system and has hardly changed since its birth. These results of the COSIMA team are published today in the journal Monthly Notices of the Royal Astronomical Society. COSIMA is an instrument onboard the Rosetta spacecraft, which investigated comet 67P/Churyumov-Gerasimenko from August 2014 to September 2016. In their current study, the involved researchers including scientists from the Max Planck Institute for Solar System Research (MPS) analyze as comprehensively as ever before, what chemical elements constitute cometary dust.

The dust that comet 67P/Churyumov-Gerasimenko emits into space consists to about one half of organic molecules. The dust belongs to the most pristine and carbon-rich material known in our solar system and has hardly changed since its birth. These results of the COSIMA team are published today in the journal Monthly Notices of the Royal Astronomical Society. COSIMA is an instrument onboard the Rosetta spacecraft, which investigated comet 67P/Churyumov-Gerasimenko from August 2014 to September 2016. In their current study, the involved researchers including scientists from the Max Planck Institute for Solar System Research (MPS) analyze as comprehensively as ever before, what chemical elements constitute cometary dust.

As the study shows, organic molecules are among those ingredients at the top of the list. These account for about 45 percent of the weight of the solid cometary material. “Rosetta’s comet thus belongs to the most carbon-rich bodies we know in the solar system,” says MPS scientist and COSIMA team member Dr. Oliver Stenzel. The other part of the total weight, about 55 percent, is provided by mineral substances, mainly silicates. It is striking that they are almost exclusively non-hydrated minerals i.e. missing water compounds.

“Of course, Rosetta’s comet contains water like any other comet, too,” says Hilchenbach. “But because comets have spent most of their time at the icy rim of the solar system, it has almost always been frozen and could not react with the minerals.” The researchers therefore regard the lack of hydrated minerals in the comet’s dust as an indication that 67P contains very pristine material.
This conclusion is supported by the ratio of certain elements such as carbon to silicon. With more than 5, this value is very close to the Sun’s value, which is thought to reflect the ratio found in the early solar system.
The current findings also touch on our ideas of how life on Earth came about. In a previous publication, the COSIMA team was able to show that the carbon found in Rosetta’s comet is mainly in the form of large, organic macromolecules. Together with the current study, it becomes clear that these compounds make up a large part of the cometary material. Thus, if comets indeed supplied the early Earth with organic matter, as many researchers assume, it would probably have been mainly in the form of such macromolecules.

Source:https://phys.org/news/2017-12-comet-67pchuryumov-gerasimenko-ingredients.html

Leave a Reply

Your email address will not be published. Required fields are marked *

Solve : *
1 + 18 =


This site uses Akismet to reduce spam. Learn how your comment data is processed.

Çok Okunan Yazılar